Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pharmacol Ther ; 247: 108445, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20240821

ABSTRACT

Allergic diseases arise from a complex interplay between immune system and environmental factors. A link between the pathogenesis of allergic diseases and type 2 immune responses has become evident, with conventional and pathogenic type 2 helper T (Th2) cells involved in both. Recently, there has been a significant development in therapeutic agents for allergic diseases: IL-5 and IL-5 receptor antagonists, Janus kinase (JAK) inhibitors, and sublingual immunotherapy (SLIT). Mepolizumab, an IL-5, and Benralizumab, an IL-5 receptor antagonist, modulate eosinophilic inflammation mediated by IL-5-producing Th2 cells. Delgocitinib shows that JAK-associated signaling is essential for the inflammatory reaction in atopic dermatitis, one of the common allergic diseases. SLIT has a significant effect on allergic rhinitis by reducing pathogenic Th2 cell numbers. More recently, novel molecules that are involved in pathogenic Th2 cell-mediated allergic diseases have been identified. These include calcitonin gene-related peptide (CGRP), reactive oxygen species (ROS) scavenging machinery regulated by the Txnip-Nrf2-Blvrb axis, and myosin light chain 9 (Myl9), which interacts with CD69. This review provides an updated view of the recent research on treatment of allergic diseases and their cause: conventional and pathogenic Th2 cells.


Subject(s)
Dermatitis, Atopic , Hypersensitivity , Humans , Cytokines , Interleukin-5/therapeutic use , Hypersensitivity/drug therapy , Th2 Cells
2.
Journal of Social and Administrative Sciences ; 9(3):174-190, 2022.
Article in English | ProQuest Central | ID: covidwho-2140741

ABSTRACT

The objective of this paper is to clarify, whenever possible, the determinants in the emergence of biological agents to improve aspects connected with public health and biosecurity. Case study of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is investigated to assess the likely emergence from a wildlife spillover and/or scientific research in labs with unexpected accident. Using a meta-analysis, results suggest that a natural spillover of SARS-CoV-2 that has generated more than 5.2 million of deaths, in analogy with natural disaster, seems to have a remote probability, instead a lab accident in the process of scientific research has a probability of occurrence of about 15-30%. These results here are important to support decision making of policymakers for global biosecurity strategies with appropriate responses to prevent the future diffusion of vital agents similar to SARS-CoV-2 in environment and society.

3.
GMS Hyg Infect Control ; 16: Doc26, 2021.
Article in English | MEDLINE | ID: covidwho-1399113

ABSTRACT

Background: Technical protection measures for laboratory activities involving biological agents include biological safety cabinets (BSC) that may be contaminated. In the case of diagnostic activities with SARS-CoV-2, this may also affect BSC that are operated at protection level 2; therefore, decontamination of all contaminated surfaces of the BSC may be required. In addition to fumigation with hydrogen peroxide (H2O2), dry fogging of H2O2-stabilized peroxyacetic acid (PAA) represents another alternative to fumigation with formalin. However, to prove their efficacy, these alternatives need to be validated for each model of BSC. Methods: The validation study was performed on 4 different BSCs of Class II A2 using the "Mini Dry Fog" system. Results: An aerosol concentration of 0.03% PAA and 0.15% H2O2 during a 30 min exposure was sufficient to inactivate SARS-CoV-2. Effective concentrations of 1.0% PAA and 5% H2O2 were required to decontaminate the custom-prepared biological indicators loaded with spores of G. stearothermophilus and deployed at 9 different positions in the BSC. Commercial spore carriers were easier to inactivate by a factor of 4, which corresponded to a reduction of 106 in all localizations. Conclusions: Dry fogging with PAA is an inexpensive, robust, and highly effective decontamination method for BSCs for enveloped viruses such as SARS-CoV-2. The good material compatibility, lack of a requirement for neutralization, low pH - which increases the range of efficacy compared to H2O2 fumigation - the significantly shorter processing time, and the lower costs argue in favor of this method.

4.
Infect Prev Pract ; 2(3): 100069, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-640118

ABSTRACT

From its origins as a left-field, experimental, and even "maverick" intervention, faecal microbiota transplantation (FMT) is now a well-recognised, accepted, and potentially life-saving therapeutic strategy, for the management of recurrent Clostridiodes difficile infection (rCDI). It is being investigated as a treatment for a growing number of diseases including hepatic encephalopathy and eradication of antimicrobial resistant organisms, and the list of indications will likely expand in the future. There is no universally accepted definition of what FMT is, and its mechanism of action remains incompletely understood; this has likely contributed to the breadth of approaches to regulation depending on interpretation. In the UK FMT is considered a medicinal product, in North America, a biological product, whereas in parts of Europe, it is considered a human cell/tissue product. Regulation seeks to improve quality and safety, however, lack of standardisation creates confusion, and overly restrictive regulation may hamper widespread access and discourage research using FMT. FMT is generally considered safe, especially if rigorous donor screening and testing is conducted. Most short-term risks are associated with the delivery method (e.g. colonoscopy). Longer term risks are less well described but longitudinal follow-up of treated cohorts is in place to assess for this, and no signal towards harm has been found to date. Rarely it has been associated with adverse outcomes including the transmission of antibiotic resistant bacteria, and even death. It is vital patients undergoing FMT are well informed to the currently appreciated risks and benefits before proceeding.

SELECTION OF CITATIONS
SEARCH DETAIL